
COMP 110/L Lecture 16

Mahdi Ebrahimi

Some slides are adapted from Dr. Kyle Dewey

Outline

•Multidimensional arrays

•JUnit fail()

Multidimensional Arrays

Recap - Arrays
Arrays are fixed-length sequences

of elements of the same type.

Recap - Arrays
Arrays are fixed-length sequences of

elements of the same type.

new char[]{‘a’, ‘b’, ‘c’}

new int[]{1, 2, 3}

new String[]{“foo”, “bar”}

new double[]{1.2, 3.4}

6

Motivations

Chicago

Boston

New York

Atlanta

Miami

Dallas

Houston

Distance Table (in miles)

Chicago Boston New York Atlanta Miami Dallas Houston

 0 983 787 714 1375 967 1087

 983 0 214 1102 1763 1723 1842

 787 214 0 888 1549 1548 1627

 714 1102 888 0 661 781 810

 1375 1763 1549 661 0 1426 1187

 967 1723 1548 781 1426 0 239

 1087 1842 1627 810 1187 239 0

Thus far, you have used one-dimensional arrays to model linear
collections of elements. You can use a two-dimensional array to
represent a matrix or a table. For example, the following table that
describes the distances between the cities can be represented using
a two-dimensional array.

7

Motivations

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},
new int[]{4, 5},
new int[]{6},
new int[0],
new int[]{7, 8, 9} }

Multidimensional Arrays
Java also allows us to make arrays of arrays.

These are often called multidimensional arrays.

new int[][]{ new int[]{1, 2, 3},
new int[]{4, 5},
new int[]{6},
new int[0],
new int[]{7, 8, 9} }

Corresponding type:int[][]

MultidimensionalArray Utility
Commonly used for representing tables

Multidimensional Array Utility
Commonly used for representing tables

13 12 19

64 89 247

78 57 21

MultidimensionalArray Utility
Commonly used for representing tables

13 12 19

64 89 247

78 57 21

new int[][]{ new int[]{13, 12, 19},
new int[]{64, 89, 247},
new int[]{78, 57, 21} }

Accessing Rows
One row of a two-dimensional array is an array...

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;
int[] row = array[0];
int columnElement = row[5];

Accessing Rows
One row of a two-dimensional array is an array...

int[][] array = ...;
int[] row = array[0];

Accessing Columns
...and columns are individual elements of rows.

int[][] array = ...;
int[] row = array[0];
int columnElement = row[5];

int[][] array = ...;
int columnElement = array[0][5];

20

Lengths of Two-dimensional Arrays

int[][] x = new int[3][4];

Lengths of Two-dimensional Arrays, cont.

int[][] array = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9},
{10, 11, 12}

};

array.length

array[0].length

array[1].length

array[2].length

array[3].length

array[4].length ArrayIndexOutOfBoundsException

22

Ragged Arrays

Each row in a two-dimensional array is itself an array. So, the
rows can have different lengths. Such an array is known as a
ragged array.

For example,

int[][] matrix = {
{1, 2, 3, 4, 5},
{2, 3, 4, 5},
{3, 4, 5},
{4, 5},
{5}

};

matrix.length is 5
matrix[0].length is 5
matrix[1].length is 4
matrix[2].length is 3
matrix[3].length is 2
matrix[4].length is 1

Example:
AccessTwoDimensionalElement.java

More 2D Array
Examples

•PrintRow2D.java

•PrintCol2D.java

JUnit fail()

fail()
Triggers immediate test failure

fail()
Triggers immediate test failure

Import static org.junit.Assert.fail;

fail()
Triggers immediate test failure

import static org.junit.Assert.fail;

@Test
public void testSomething() {

if(someFailureCondition) {
fail();

}
}

fail() Utility

• Some test failures cannot be easily phrased
as one value equals another value

• Occasionally more convenient

• We can define our own
assertEquals()and
assertArrayEquals() using fail()

Some cases where it is useful:
1- mark a test that is incomplete, so it fails and
warns you until you can finish it
2- making sure an exception is thrown:

There are three states that your test case can end up in
Passed: The function under test executed successfully and returned data as
expected
Not Passed: The function under test executed successfully but the returned
data was not as expected
Failed: The function did not execute successfully and this was not
intended (Unlike negative test cases that expect a exception to occur).

If you are using eclipse there three states are indicated by a Green, Blue
and red marker respectively.

We can use the fail operation for the third scenario.
e.g.:

public Integer add(integer a, Integer b) { return new Integer(a.intValue() + b.intValue())}

Passed Case: a = new Interger(1), b= new Integer(2) and the function returned 3
Not Passed Case: a = new Interger(1), b= new Integer(2) and the function returned
any value other than 3
Failed Case: a = null , b = null and the function throws a NullPointerException

Example

•FailExample.java

•FailExampleTest.java

